
YottaDB Management
GUI

Third time the charm!

October 2022

2

YottaDBⓇ – https://yottadb.com

● A mature, high performance, hierarchical key-value,
language-agnostic, NoSQL database whose code base
scales up to mission-critical applications like large real-
time core-banking and electronic health records, and
also scales down to run on platforms like the Raspberry
Pi Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.

YottaDB is a registered trademark of YottaDB LLC

3

Architecture

4

Why a GUI?

● Do you remember how to change a key size on mupip?
– Is it -key, or -rec?
– How do you update the original GDE defintion?
– Does it go on the region or segment?

● Is it mupip journal or mupip set to turn on a journal?
● How much free space do I have, and how much can I extend my

database?
● Is my database file in good health right now?
● A GUI is for you!

5

History of our GUIs

● This is the 3rd iteration of a GUI for YottaDB
● First one was a prototype
● Second one built on the work of the first
● Both stacks were npm based (to create resources; served by M Web

Server)
– First GUI eventually didn’t run anymore (Vue version became too old)
– Addressing large dependency trees/security issues with npm isn’t

possible for a small team

6

Lessons learned (1/2)

● DO NOT USE npm
– (we use it for testing with puppeteer though, but we

keep the packages being used limited)

● Carefully control and minimize your dependencies
● Make sure that you can build your project without

external dependencies and build steps

7

Lessons learned (2/2)

● Focus on providing functionality that users want
● Focus on using a user interface to simplify the view and

administration of YottaDB
– Previous user interfaces were more of proof-of-concepts,

but did not address pain points for users
● Developers usually don’t need GUIs that much
● Administrators do, and it needs to be simple

8

First Incarnation

9

10

Second Incarnation

11

12

13

14

15

16

Third Incarnation

17

18

19

20

21

22

23

24

Implemented Features

● System Information (Plug-ins, Environment)
● View, Create, Edit, Delete Regions and database (post creation

GDE definition update still be done)
● Extend Databases
● Start/Stop Journaling
● Lock Management (LKE)
● Tabbed Global Viewing (in progress)

25

Planned Features

● Tabbed Routine Viewing
● Trigger Administration
● Backup/Restore
● Integrity Check
● Defrag (mupip reorg)
● Replication Administration

Demo

27

Software Stack (Frontend)

● https://gitlab.com/YottaDB/UI/YDBGUI
Name Version

Bootstrap 4.6.2

Bootstrap Icons 1.8.0

jquery 3.5.1

jquery-ui 1.13.2

jstree 3.3.12

https://gitlab.com/YottaDB/UI/YDBGUI

28

Software Stack (Backend)

● M-Web-Server (soon to be moved to a YDB-only Simplified
Web Server—please see my other talk)
– File resources (including front end components) served

unchanged.
– Web Services served by API end points

● (see
https://gitlab.com/YottaDB/UI/YDBGUI/-/blob/master/docs/rest.md
)

https://gitlab.com/YottaDB/UI/YDBGUI/-/blob/master/docs/rest.md

29

docker run -dp 1338:1338 -p 8089:8089 --name=octo-vehu
yottadb/octo-vehu:latest-master

Try for yourself (port 8089)

30

Install and Running on your instance

mkdir build && cd build
cmake .. && make && sudo -E make install

● Add $ydb_dist/plugin/o_ydbmwebserver.so and
$ydb_dist/plugin/o/_ydbgui.so to your
$ydb_routines (or use ydb_env_set)

$ydb_dist/yottadb -r %ydbgui [--port nnnn]

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

