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YottaDBⓇ – https://yottadb.com

● A mature, high performance, hierarchical key-value, 
language-agnostic, NoSQL database whose code base 
scales up to mission-critical applications like large real-
time core-banking and electronic health records, and 
also scales down to run on platforms like the Raspberry 
Pi Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.

YottaDB is a registered trademark of YottaDB LLC
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Architecture
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Why a GUI?

● Do you remember how to change a key size on mupip?
– Is it -key, or -rec?
– How do you update the original GDE defintion?
– Does it go on the region or segment?

● Is it mupip journal or mupip set to turn on a journal?
● How much free space do I have, and how much can I extend my 

database?
● Is my database file in good health right now?
● A GUI is for you!
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History of our GUIs

● This is the 3rd iteration of a GUI for YottaDB
● First one was a prototype
● Second one built on the work of the first
● Both stacks were npm based (to create resources; served by M Web 

Server)
– First GUI eventually didn’t run anymore (Vue version became too old)
– Addressing large dependency trees/security issues with npm isn’t 

possible for a small team



6

Lessons learned (1/2)

● DO NOT USE npm
– (we use it for testing with puppeteer though, but we 

keep the packages being used limited)

● Carefully control and minimize your dependencies
● Make sure that you can build your project without 

external dependencies and build steps
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Lessons learned (2/2)

● Focus on providing functionality that users want
● Focus on using a user interface to simplify the view and 

administration of YottaDB
– Previous user interfaces were more of proof-of-concepts, 

but did not address pain points for users
● Developers usually don’t need GUIs that much
● Administrators do, and it needs to be simple



8

First Incarnation



9



10

Second Incarnation
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Third Incarnation
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Implemented Features

● System Information (Plug-ins, Environment)
● View, Create, Edit, Delete Regions and database (post creation 

GDE definition update still be done)
● Extend Databases
● Start/Stop Journaling
● Lock Management (LKE)
● Tabbed Global Viewing (in progress)
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Planned Features

● Tabbed Routine Viewing
● Trigger Administration
● Backup/Restore
● Integrity Check
● Defrag (mupip reorg)
● Replication Administration



Demo
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Software Stack (Frontend)

● https://gitlab.com/YottaDB/UI/YDBGUI
Name Version

Bootstrap 4.6.2

Bootstrap Icons 1.8.0

jquery 3.5.1

jquery-ui 1.13.2

jstree 3.3.12

https://gitlab.com/YottaDB/UI/YDBGUI
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Software Stack (Backend)

● M-Web-Server (soon to be moved to a YDB-only Simplified 
Web Server—please see my other talk)
– File resources (including front end components) served 

unchanged.
– Web Services served by API end points 

● (see 
https://gitlab.com/YottaDB/UI/YDBGUI/-/blob/master/docs/rest.md
)

https://gitlab.com/YottaDB/UI/YDBGUI/-/blob/master/docs/rest.md
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docker run -dp 1338:1338 -p 8089:8089 --name=octo-vehu 
yottadb/octo-vehu:latest-master

Try for yourself (port 8089)
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Install and Running on your instance

mkdir build && cd build
cmake .. && make && sudo -E make install

● Add $ydb_dist/plugin/o_ydbmwebserver.so and 
$ydb_dist/plugin/o/_ydbgui.so to your 
$ydb_routines (or use ydb_env_set)

$ydb_dist/yottadb -r %ydbgui [--port nnnn]



Thank You!
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